221 research outputs found

    SAT-Based Synthesis Methods for Safety Specs

    Full text link
    Automatic synthesis of hardware components from declarative specifications is an ambitious endeavor in computer aided design. Existing synthesis algorithms are often implemented with Binary Decision Diagrams (BDDs), inheriting their scalability limitations. Instead of BDDs, we propose several new methods to synthesize finite-state systems from safety specifications using decision procedures for the satisfiability of quantified and unquantified Boolean formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on computational learning, templates, or reduction to first-order logic. We also present an efficient parallelization, and optimizations to utilize reachability information and incremental solving. Finally, we compare all methods in an extensive case study. Our new methods outperform BDDs and other existing work on some classes of benchmarks, and our parallelization achieves a super-linear speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1

    On QBF Proofs and Preprocessing

    Full text link
    QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.Comment: LPAR 201

    Incremental QBF Solving

    Full text link
    We consider the problem of incrementally solving a sequence of quantified Boolean formulae (QBF). Incremental solving aims at using information learned from one formula in the process of solving the next formulae in the sequence. Based on a general overview of the problem and related challenges, we present an approach to incremental QBF solving which is application-independent and hence applicable to QBF encodings of arbitrary problems. We implemented this approach in our incremental search-based QBF solver DepQBF and report on implementation details. Experimental results illustrate the potential benefits of incremental solving in QBF-based workflows.Comment: revision (camera-ready, to appear in the proceedings of CP 2014, LNCS, Springer

    CCancer: a birdā€™s eye view on gene lists reported in cancer-related studies

    Get PDF
    CCancer is an automatically collected database of gene lists, which were reported mostly by experimental studies in various biological and clinical contexts. At the moment, the database covers 3369 gene lists extracted from 2644 papers published in āˆ¼80 peer-reviewed journals. As input, CCancer accepts a gene list. An enrichment analyses is implemented to generate, as output, a highly informative survey over recently published studies that report gene lists, which significantly intersect with the query gene list. A report on gene pairs from the input list which were frequently reported together by other biological studies is also provided. CCancer is freely available at http://mips.helmholtz-muenchen.de/proj/ccancer

    Parameterized Synthesis with Safety Properties

    Full text link
    Parameterized synthesis offers a solution to the problem of constructing correct and verified controllers for parameterized systems. Such systems occur naturally in practice (e.g., in the form of distributed protocols where the amount of processes is often unknown at design time and the protocol must work regardless of the number of processes). In this paper, we present a novel learning based approach to the synthesis of reactive controllers for parameterized systems from safety specifications. We use the framework of regular model checking to model the synthesis problem as an infinite-duration two-player game and show how one can utilize Angluin's well-known L* algorithm to learn correct-by-design controllers. This approach results in a synthesis procedure that is conceptually simpler than existing synthesis methods with a completeness guarantee, whenever a winning strategy can be expressed by a regular set. We have implemented our algorithm in a tool called L*-PSynth and have demonstrated its performance on a range of benchmarks, including robotic motion planning and distributed protocols. Despite the simplicity of L*-PSynth it competes well against (and in many cases even outperforms) the state-of-the-art tools for synthesizing parameterized systems.Comment: 18 page
    • ā€¦
    corecore